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INTRODUCT ION

The flow field resulting from the interaction of a shock wave and a

boundary layer on a projectile or missile remains a major problem which has

yet to be completely analyzed. The interaction process plays an important

role in several areas. Among these are: i) body lift and drag, (ii) side

force development and control and (iii) heat transfer. Since the interaction

causes an abrupt pressure rise and boundary layer thickening and may be ac-

companied by regions of local separation, the interaction flow can be a major

contributor to the overall body drag and can cause substantial changes from

the potential flow pressure distribution. Furthermore, since the interac-

tions are often three-dimensional due to either geometric or flow incidence

effects, the generated forces may not be symmetric and may result in sigifi-

cant side forces. These side forces, in turn, can lead to serious control

and guidance problems. Finally, the shock wave boundary layer interaction

zone may be a region of severe heat transfer. The problems associated with

interactions are particularly troublesome at transonic speeds where both the

shock location and its shape are very sensitive to minor changes in flow

geometry. As a consequence, in recent years there has been considerable

interest in the development of accurate and efficient prediction techniques

for this category of the interaction problem.

At present, two main approaches for treating the shock wave-boundary

* layer interaction problem are being pursued. The first termed the strong in-

teraction approach divides the flow region of interest into two parts, an

outer inviscid part and a wall viscous part. Each region is then solved sep-

arately via the appropriate set of equations for that region. Equations ap-

propriate for inviscid flows; e.g., Euler, potential flow or simple wave re-

lations, are used in the outer region and boundary layer equations are used

in the inner region. At the juncture of the regions, matching conditions

* which require continuity of all flow variables are applied. In flow situa-

tions in which the outer flow is supersonic and thus described by hyperbolic

equations, a solution can be forward-marched in space with the inviscid and

viscous regions coupled on a station-by-station basis. The chief difficulty

in this process is that mathematically stiff equations must be solved. Com-

mon problems with stiff equations manifest themselves in the form of numeri-

cal solutions which can branch off the desired solution thus producing a
/
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physically unrealistic result. In regions where the inviscid flow is

subsonic and thus described by elliptic equations, a forward-marching

procedure without iteration is not physically realistic since the upstream

pressure propagation is not modeled. Consequently a sequence of inviscid and

boundary layer solutions must be performed in a manner in which each stage

corrects the former stage through global iteration. Additional problems

occur in transonic flows where both supersonic and subsonic outer regions are

present and where small displacement effects may have considerable influence

on shock location and overall pressure distribution. In cases where the

nominally inviscid flow is subsonic behind the shock the situation is further

complicated by the subsonic outer region being elliptic. Since the flow

cannot be forward marched here, a global rather than a station-by-station

iteration must be used.

If an iteration procedure is to be used, the viscous layer can be

solved iteratively by either a forward-marching boundary layer calculation

procedure or as the asymptotic condition of a time or pseudo-time dependent

integration. In the case of steady state forward-marching boundary layer

procedures, problems are encountered when the boundary layer is subjected to

an adverse pressure gradient strong enough to cause separation. Although a

boundary layer procedure can be forward marched through separation by

suppressing streamwise convection terms in the separated flow region, via

the so called FLARE approximation (1], the resulting solution is based upon

an approximation made in the separated flow region which becomes

progressively more inaccurate as the backflow velocities increase.

Therefore, calculated details of the flow in this region cannot be expected

|'I to be accurate with significant backflow using FLARE. A global, but time

consuming, iteration (21 is necessary to replace the FLARE approximation, and

at this point the efficiency of the forward-marching scheme must be carefully

evaluated to ensure a net gain exists relative to solving the full

Navier-Stokes equations for the viscous layer. Time integration of the

interaction between the boundary layer and the external flow can be

structured to avoid the use of either FLARE or thE global iteration to

account specifically for the backflow velocity (2], and in some cases the

time marched iteration approach may show a significant gain relative to

solving the Navier-Stokes equations for the viscous flow region. However,

/ the interaction approach remains limited, even with time integration, to
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flows where the division of the flow into zones which can be interacted is

reasonable and details of any separated zone are not of major interest. A

discussion of some of the early techniques aimed at the shock wave-boundary

layer interaction problem which are based upon a viscous-inviscid approach is

given by Hankey [3].

The second approach used in obtaining solutions for shock wave-boundary

layer flow field is the fully viscous analysis. The fully viscous analysis

solves the entire flow field via a single set of equations, thus avoiding any

need to divide the flow into viscous and inviscid regions. The Navier-Stokes

analyses pursued to date include explicit, implicit and hybrid numerical for-

mulations. For example, in a very early work of this type, MacCormack [4]

applied an explicit procedure to the laminar interaction problem. In subse-

quent work MacCormack and his co-workers have used this explicit method

extensively in analyzing the interaction flow field [5-81. The basic method

has also been used by Shang and Hankey [9] in calculating turbulent flow over

a compression ramp and in predicting a streamwise corner interaction region

[101. Recently MacCormack has developed a new hybrid explicit-implicit

characteristics method [11] which is considerably faster than the fully

explicit method [4-10], and has applied this technique to shock wave-boundary

layer interaction problems. This same technique has also been applied to

axisymmetric interaction flow fields by Viegas and Coakley [12].

In addition to the fully explicit investigations of Ref. 4-10, and the

hybrid investigations of Refs. 11 and 12, Levy, Shamroth, Gibeling and

McDonald [131 and Beam and Warming [14] have applied implicit solution

procedures to the interaction flow field problem. In the former invest-

igation, Levy et al applied the Briley-McDonald consistently split Linearized

Block Implicit (LBI) solution procedure [15, 16] to the shock wave-boundary

layer interaction problem in a feasibility study which was part of a larger

effort primarily focused on a boundary layer strong interaction study. Beam

and Warming [14] also applied a similar implicit scheme to the interaction

problem.

To date many investigations have focused upon the interaction flow

field problem. Most of the analyses have concentrated upon two specific

problems; (i) flat plate - ramp compression corners and (ii) two-dimensional

shock impingement on a flat plate. The problem of axisymmetric transonic

interactions which may be particularly relevant in missile or projectile

/
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applications has received less attention. Prior to the present study, Viegas

and Coakley [12] applied MacCormack's hybrid technique to an interaction

occurring on an axisymmetric body. Little other work has concentrated upon

the axisymmetric problem.

This report presents and describes the development and application of a

fully viscous method for solving transonic shock wave-boundary layer

interaction problems. The method utilizes the Briley and McDonald Q15, 16]

linearized block implicit (LBI) technique for the numerical solu' ., )f the

multidimensional, time-dependent Navier-Stokes equations, and ha en

applied to several axisymmetric flow problems. These include tr onic flow

in a constant area axisymmetric pipe, transonic flow over an axi "M .ric

bump, shock inducement at an axisymmetric compression corner and Lne

two-dimensional flat plate boundary layer - impinging shock wave interaction

problem. In addition to these steady flow cases, several time-dependent

problems are reported in which the transonic flow over an axisymmetric bump

was subjected to downstream static pressure oscillation.

In the following sections, the governing equations are presented and a

general description of their transformation to general curvilinear

coordinates is given. However, description of the specific coordinate

transformation used for each case is presented on a case-by-case basis.

ANALYSIS

Governing Equations

The equations used in the present effort are the ensemble-averaged,

time-dependent Navier-Stokes equations which can be written in vector form as

Continuity

ap+ v • - 0 (1)

Moment um

+ V * (PUu) -- Vp + V + WT) (2)

,I
/
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Energy

3ph * +T Dp +t + V (p h) V q + q Dt + 0 + PC (3)

where p is density, u is velocity, p is pressure, w is the molecular stress

tensor wT is the turbulent stress tensor, h is enthalpy, q is the mean heat

flux vector, qT is the turbulent heat flux vector, 0 is the mean flow

dissipation rate and e is the turbulence energy dissipation rate. If the

flow is assumed at a constant total temperature, the energy equation is

replaced by

2
T T + - - constant (4)

P

where To is the stagnation temperature, q is the magnitude of the velocity

and Cp is the specific heat at constant pressure. In a number of cases

considered in this work the assumption of constant total temperature has been

invoked by using Eq. 4 as an approximation to Eq. 3 for the sole purpose of

reducing computer run time where the constant To assumption was warranted.

Cases in which this substitution has been made are identified in the text

describing results. A number of terms appearing in Eqs. 1-4 require

definition. The stress tensor appearing in Eq. 2 is defined as

ir-2iiI -(I i-% V bn (5)3 B))

where KB is the bulk viscosity coefficient and is the deformation tensor,

defined by:

ID ++(VU T ) (6)

In addition the turbulent stress tensor has been modeled using an isotropic

eddy viscosity such that:

P - - 2i p0)( (7)

where MT, the turbulent viscosity, is determined by a suitable turbulence

model. Turbulence modeling is described in some detail in the next section.

Equation 3 contains a mean heat flux vector defined as follows:

J+

q -- c(VTJ 8
/
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and a turbulent heat flux vector defined as:

T ~T (VT) -K(9)

where K and KT are the mean and turbulent thermal conductivities,

respect ively.

Also appearing in Eq. 3 is the mean flow dissipation term 0.

2u ED: ED 3 U(10)

The equation of state for a perfect gas

p = pRT (I

where R is the gas constant, the caloric equation of state

e c T (12)
v

and the definition of static enthalpy

hinc T (13)

supplement the equations of motion.

Finally the flow properties Pi, Kc and KB are determined using the following

constitutive relations.

The molecular viscosity ii is determined using Sutherland's law.

T 3/2 T +S
- -0 (14)
0 T +S

where S1 - 100*K for air.

The bulk viscosity will be assumed to be zero,

KB =0(15)

and the thermal conductivity may be determined by use of a relation similar

to Sutherland's law viz.

K T 3/2 T 0 S+(16)
0 0 2

I where S2 -194*K for air.

7



Turb- ?nce Modeling

Several alternative turbulence models have been considered in the

course of the present work. In general terms, the models used were zero,

one- and two-equation models. The formulation of each is described in this

sec t ion.

Zero Equation Model - (Mixing Length)

Of all available turbulence models, Prandtl's mixing length model is

probably still the most widely used. The model was originally developed for

use in unseparated boundary layer flow situations and has been shown to

perform well under such conditions. In the cases described in this report

the mixing length model has been used extensively in order to investigate its

use in the shock wave/boundary layer interaction problem. An advantage of

the method from the point of view of economy is that is does not require

additional transport equations to model the effect of turbulence, but rather

relates the Reynold's shear stress to mean flow quantities via:

auuu.

e 1

where UT = D 2 (2V : 0)1/2

Re

where I - min([ ,.KdD]

where d is the normal distance to the nearest wall and D is van Driest

damping coefficient given by
D = 1 - exp(- y+/A + )

- 0.098

-0.4 (17)

y "ndu /v

uT • Tg/O 1 / 2

where the local shear stress 11 is obtained from

S = (20 :0 )11/2 (18)

and D is defined by Eq. 6.

/~8 - :.



One problem in the mixing length formulation is the definition of 6. In

boundary layers the streamwise velocity u approaches an edge velocity, Ue,

asymptotically, however, a monotonic approach to an asympototic edge velocity

is not characteristic of Navier-Stokes solutions. In order to avoid the

problem of determining the boundary layer edge, 6, as defined in the usual

boundary layer context, i.e., 6 is the distance from the wall at which u/ue

0.99, the following relation is used.

6 - 2 .Od(q/qmax=C) (19)

In other words, S, is taken as twice the distance (measured away from the

nearest wall) for which q/qmax - c. The value of c used in the present

effort was 0.90.

One-Equation Model - (k-1)

Although as discussed above the mixing length concept is valid for a

variety of flows, some important flow situations arise in which a less

restrictive model is required. One such model is the one-equation turbulence

model [17, 18, 19] in which a transport equation for turbulence kinetic

energy, k, is formulated as follows:

a(p k) V( ) T- (1 Vk) + 2 V'T ( D:) - P

at

where following Ref. 20, Uk is set to 1.0, and k is the turbulence kinetic

energy
k +' u (20)

and the Prandtl-Kolmogorov relation, Eq. 21, defines the turbulent viscosity

as:

pk2

1A 2c (21)
=T

In addition, the turbulence dissipation rate c is determined by:

Sa c 3/4 k3 /2

where 1, is a relevant turbulent length scale for the problem of interest.

The k-t model has an advantage over the mixing length model in that the use

"a 9



of a transport equation for turbulence kinetic energy allows for its

convection, production and dissipation. This is important because it allows

a nonequilibrium effect on the turbulence to be included in the calculation

while the mixing length model can only account for local equilibrium

turbulence effects via its association with the mean velocity field. A major

disadvantage which the k-1 model shares with the mixing length model is the

requirement of length scale specification. Typically the mixing length, as

described in the previous section, is used as the representative length

scale.

In modeling the flow in the near wall region where low local turbulence

Reynolds' numbers occur, two approaches are available. The first is the wall

function approach which does not resolve the near wall region but assumes

specific functional forms for the required turbulence quantities and uses

these forms to create the required normal derivative formulations at the

first grid point from the wall. Such an approach obviously requires a

detailed knowledge of the turbulence model dependent variables in the

vicinity of the wall. Although reasonable functional formulations can be

specified for simple flows such as constant pressure boundary layers,

specification in the much more complex flows of current interest are much

more difficult. Therefore, the alternative approach in which the viscous

sublayer is resolved has been used. The method makes no approximation at the

boundary, but requires that the near wall low turbulence Reynolds' number

physics be modeled. In this work, a near wall model which was successfully

used by Shamroth and Gibeling [21] in a time-dependent airfoil flow field

analysis, has been implemented in the computer code. The analysis of Ref. 21

follows the integral turbulence energy procedure of Refs. 22 - 24 by

utilizing a turbulence function a1, where

a 1 1/2 (23)

and al is taken as a function of a turbulence Reynolds's number of the form

[f (R1 irfCRT) 1
1 a0L10 /1. +6.66 a 0 )] (24)

S a -. 0115
0

fOR ) 100 R T0.22  R T< 1 (25)

f(R T 68.1 R T.+614.3 R T 40

10



and a cubic curve was fitted for values of RT between I and 40. As

previously discussed, Refs. 22 - 24 utilized an integral form of the

turbulence kinetic energy and, therefore, RT was defined as an average

value . R

RT T ~ d f 5  0 y (26

In the present effort RT was defined as the local ratio of turbulent tM

laminar viscosity, al was evaluated via Eq. 24 and CP related to a, via

Eq. 23.

Two-Equation Model - (k-c)

Although the one-equation approach does relieve some restrictions

present in the mixing length approach, it still requires specification of a

length scale. The k-C, two-equation turbulence model [20, 40] in which both

the turbulence kinetic energy and the turbulence dissipation rate are

governed by transport equations represents a more general model. In this

approach the k-equation is as given in Eq. 20, but the algebraic relation for

e given by Eq. 22 is replaced by the following transport equation.

T V2(V2U)2 (
(p) + V.(Pu -) = V.( -- Vi) + cl(2 T  D: ) + 2 '2U( -  (27)

where following Reference 20

C 1.55

and 1

2 [ 2- 0.3 exp(-RT)2]

c 2 2.0

and RT is defined as:i 0k2

R A

However, attempts to solve Eqs. 20 and 27 without modification fail

because an appropriate boundary condition for £ at a solid boundary is

difficult to prescribe such that Eq. 27 is satisfied. In order to circumvent

this problem, Eq. 27, the turbulence dissipation equation, has been modified

by the inclusion of the term:

-
2 wjT (V2U)2

11



which following Jones and Launder [201 is included in order to obtain better

agreement with experimentally determined k distributions in the near-wall

region. In addition, Jones and Launder's [201 inclusion of the term:

- 2pv (Vk/2)
2

in Eq. 28 is a numerical device, rather than a physical model, which allowed

c-0 to be prescribed as a function boundary condition [20].

a(pk) + V * (p+k) V 4T Vk + 2P. T D ) - e- 2pv (9k1/2) 2  (28)
~k

12
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COORDINATE SYSTEM DETAILS

Equations 1 - 3 and 27 - 28 are written in vector form in which the

spatial dependent variables represent a general curvilinear system yi

(j -1, 2, 3). In principle an arbitrary coordinate syst em can be used,

however experience has shown that to obtain accurate and economical numerical

solutions the coordinate system used must meet certain criteria. These

include the ability to permit accurate implementation of boundary conditions,

sufficient smoothness of coordinate data and flexible distribution of

computational grid points. The first factor to be considered concerns the

treatment of boundary conditions. The specification of boundary conditions

which do not fall upon coordinate lines or at specific grid points can

present a difficult problem for numerical analyses. Although finite

difference molecules can be constructed for boundary points which do not fall

upon coordinate lines, such molecules may have an unacceptably high spatial

truncation error associated with them. It should be noted that while the

boundary condition problem arises in both viscous and inviscid analyses, it

is considerably more severe in viscous flows where no-slip conditions on

solid walls can combine with boundary condition truncation error to produce

numerical solutions which are both qualitatively and quantitatively in

error. Thus, the first property required of any coordinate system to be used

in a viscous analysis should be that boundary surfaces coincide with

coordinate surfaces. A second coordinate system requirement is sufficient

smoothness of geometric data. This requirement is more stringent than simply

requiring the existence of a given number of analytically determined

4coordinate transformation derivatives; the coordinates must not have large

changes in the coordinate geometry metric data between grid points. Such

large changes can cause serious deterioration of solution accuracy or even

prevent obtaining a converged solution. The final item to be considered is

the need to obtain high grid resolution in specified regions of the flow

field. For example, the wall region of viscous flows is characterized by

rapid changes in flow variables, therefore the computational grid should have

adistribution of points designed to resolve these gradients. In other

regions the flow variables change slowly and these regions should have a

relatively sparse computational grid associated with them, in order to

maintain an economic solution.

13



A recent review of grid generation techniques has been made by Thompson

[25] who presents an extensive overview of available grid generation

techniques. In summary, these include the elliptic methods popularized by

Thompson et al [26], the conformal techniques typified by Moretti's work

(27], and the constructive approach such as that of Eiseman [28].

The governing equations for the present problems have been given in the

previous section in vector form (Eqs. I - 3 and 27 - 28). However,

implementation of a solution procedure requires that these equations be

transformed into an appropriate coordinate system. Therefore, the governing

equations written in a cylindrical-polar coordinate system are transformed

with a general Jacobian transformation of the form

y yJ(x, x2' x3, t) (29)

T a t

where (xl, x2 , x3 ) = (r, 0, z) are the original cylindrical polar

coordinates. The velocity components remain the components (UI, U2 ,

U3 ) in the (xi, x2, x3) coordinate directions, respectively. The new

independent variables yJ are the computational coordinates in the

transformed system. The coordinate system requirements for the current

application may be represented by a subset of the general transformation,

Eq. 29,

y y (xi, x3 , t) (a)

y y2 (x2) (b) (30)

3 y3(, -3 y3 ( x t) (c)

which is a general axisymmetric time-dependent-trensformation. For

axisymmetric flows, Eq. 30b reduces to y2 - i2, and all derivatives

a/ay 2 are assumed to be zero. The transformation, Eq. 30, with the

axisymmetric flow assumption has been utilized in the computer code developed

under the present effort.

Application of the Jacobian transformation requires expansion of the

temporal and spacial derivatives using the chain rule, i.e.,

~3 .
a I j t (31)
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and

3(32)
3x. jil 'i aiI

where

yp t il=
(33)

-.

1

The relations Eqs. 32 - 33 are first substituted into the governing equations

written in cylindrical polar coordinates. Then the resulting equations are

multiplied by the Jacobian determinant of the inverse transformation,

ax1  ax ax I
ayI 3y2  ay3

(;19 ;x2, x3 )  'x2  x 2  ax2  (41= 2 . .. 1 2 2 2
3(y, y2 , y3 ) 3y1  ay2  ay3

a 3  ax 3  a3

ayI y2  ay3

and the equations are cast into a conservative form using the following

relations

3 a.
S- 0 (35)4 j-l 3y j

j- ayt

3 +  I-  ,t 0 (36)
-T jul ayi

where

Jy

(37)

Jt -jyj',

3 It should be noted that Equation 36 expresses a geometric conservation law

and plays an important role in enabling the equations of motion to be cast

into conservative form.
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The particular conservation form developed implies that all factors involving

the radial coordinate r W xI remain as they were before the Jacobian

transformation. The resulting equations are presented below as Eqs. 40 - 49.

The geometric relations Eq. 35 - 36 may be obtained from the

transformation relations for ;,j and ;,j in terms of the inverse

transformation derivatives (e.g., Reference 29),

-1 - - - -

y ,I x2, 2 x3, 3 - 2 ,3x3 ,2

y '2 X3 , 2 x 1,3 - 3 ,3 x 1,2

-l, " -, -3, - -21 ,
-1

y 23 Xl,2 x 2 ,3 - x, 13 x2, 2

-2 - - - -

3' "2,3 3,1 - x2,1 x3,3

-2 -2 
(38)S2 3,3  ,1 - 3,1 1l,3

-2 t - -
' 3 1,3 x2,1 1,1l 2,3

-3 - - - -

y 1 2 ,1 K3 ,2  x2,2 x3,1

-3
'2 = 3,1 1 2  3,2 = I,

-3 -- - - -

X 1 K3x, 2 ,2  '1,2 x2,1

k + - - - (  (39)

* The transformed governing equations may be written in the following

compact form:

3 j3+
a (J W) a

j- ~ " t i jJ~~

+ Y a _yi + C a (Jyj,~ ) (40)

ay3  y

+ Js + Jc
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where

y
t t

Ysii =- y j  (41)

ax.
I

Further, the coefficients Si, "Yi, Ci are given by

= I , 8 = 1, 8 = I

r 2 r 3

y - 1, Y "1,y - (42)

1 2 r 3

C I , = I, € = 1

rm 2 r 3

and m I 1 for all equations except the x2 - direction momentum equation,

for which m = 2. The vector variables used in Eq. 40 are defined as

PU1 IPU IUi

PU2  PU 2Ui
P U 3  p U i

Fi 
= r PU. (43)

ph phUi

pk pkU.
i

Lp 6 LPcU i

where n 1 1 for i = I and n - 0 for i = 2, 3.
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"pSi rT 11

P6 i2 r T12

P6 0 rT13

PI" 0 G 1 * 0 (44)

0 rq1

0 t Yl k, 1
k

L 0 J 11TYl C, I

T iy

T1'1

Ti2

00

G. 0
% qi

'y.-f i k , for i - 2,3

ok

UT Vlc~ i
0£

C

Note that the velocity components (U, U2 , U3 ) are the cylindrical-

polar velocity components, and Tij is the stress tensor written in

cylindrical-polar coordinates. The molecular and turbulent stress tensors

may be written as

ij 2  eu ij (4 5 )

1 I
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au
D 1- 1

au u
D22 1 2 +u1

r ax2

S au 3 (46)D33 = _

ax3

-D 1r _ (U2)+ I Ul
12 r- -x ax

I -a1 aU3 + au l

13 m [U a]J

23 a- x2  ax3

V • U -1 a (rUI) + I au2 + au3  (47)

r a x r a x 3

The derivatives required in Eqs. 46 - 47 must be expressed in terms of the

computational coordinates yJ using the chain rule, (Eq. 32).
F

Finally, the vector S contains source terms and certain differential

terms which do not conform to the basic structure of Eq. 40, and the vector

contains the additional curvature terms due to the cylindrical-polar

coordinate system.

0

S 0 (48)1 0
D+* + c
.t- 1/2 2

UiT [2D.. Di. i -pc - 2ov (Vk/)
13

Cl I [VT(2D 5..i j ) + 2 muT (V2U) 2  2
k k

/

*1 19
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Sp0 2
2 - T 2 2

r r

I pUIU 2

r
0

C- 0
0
0
0

Since the cases described in this report have widely differing

geometry, specific details of the grid transformations will be postponed

until each case and its results are described in detail in subsequent

sections.

Solution Procedure

The solution procedure used to solve the governing equations detailed

previously is the linearized block implicit (LBI) method of Briley and

McDonald [15, 16], which has been applied to numerous other problems. A

detailed explanation of this method can be found in the work of Briley and

McDonald [15, 161. Repetition of this is unwarranted here; instead a summary

of the method can be found in the appendix to this report. This appendix

also contains sections dealing with linearization and time differencing,

treatment of diffusive terms and the splitting scheme of the LBI method.

j 2
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DISCUSSION OF RESULTS

Under the present effort a variety of test cases have been performed in

order to investigate various aspects of both steady and unsteady shock wave-

boundary layer interactions. These cases, which are summarized below, are

discussed in detail in this section. For clarity, geometry descriptions and

boundary condition specification are described subsequently for each case.

The cases presented are axisymmetric unless otherwise stated, and are as

follows:

(i) A normal shock wave-boundary layer interaction in a tube

(Mm = 1.44);

(ii) Steady transonic flow over a bump (M. 0.875);

(iii) Unsteady transonic flow over a bump (M.m 0.875, reduced
frequency =0.175 and 0.004);

(iv) Flow over a compression ramp (M.m 2.0);

(v) Shock impingement on a flat plate boundary layer flow
(Mm = 2.0).

Normal Shock Wave-Boundary Layer Interact ion in a Constant Area Tube

Normal shock-vave-boundary layer interaction is a frequently occurring

phenomenon in aeronautical applications. The flow field contains a complex

set of phenomena including shock waves, boundary layers in adverse pressure

gradients and possibly a zone of separated flow. Even in cases where the

shock pattern is essentially steady, the sudden wall static pressure rise

accompanying the interaction can lead to significant unbalanced forces, and

the high heat transfer rates typically present in non-isothermal flows at

flow reattachment can lead to structural problems. The first case considered

simulates a normal shock wave-boundary layer interaction occurring at modest

supersonic Mach number in a tube of constant circular cross section. The

case has been specified to coincide with the experimental data of Mateer,

Brosh and Viegas [301. These experimental results are available in

sufficient detail to enable detailed comparison between experiment and

prediction to be performed.

The calculation was performed for an inlet Mach number of 1.44 with an

imposed exit to inlet pressure ratio of 2.0 and a Reynolds' number based on

5upstream boundary layer thickness of 5.83 x 10 The inlet boundary layer

thickness which was 2.5 cm was also used as the reference length for the

calculation.
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Boundary Condit ions

A major factor in obtaining efficient solutions for the Navier-Stokes

equations is specification of appropriate boundary conditions. Boundary

condition specification, which has been the subject of considerable effort in

recent years, essentially imposes the effect of the environment in regions

outside the computational domain on the problem being investigated.

Specification of boundary conditions at walls is relatively straight forward,

but proper specification at inflow and outflow boundaries presents a more

difficult problem. The present effort follows the work of Briley and

McDonald (33] who suggest examining the characteristics of the inviscid

problem for guidance at inf low and outflow boundaries. Since at a supersonic

inflow boundary all dependent variables can be specified and since at a

subsonic outflow boundary only one dependent variable can be specified,

boundary conditions were set as follows:

Mi Upstream (supersonic inflow) boundary -

Function boundary conditions for each dependent variable

Cu, w. P. h, k and 0) with profiles consistent with

experimentally determined values [30].

(ii) Downstream (subsonic outflow) boundary -

Second derivative of u, w, h, k and c set to zero.

Static pressure specified.

(iii) Wall boundary-

No-slip (i.e. function values u -w -k -c 0).

Normal Momentum equation.

Adiabatic Wall.

(iv) Sysmmetry Plane-

Function value u - 0.

First Derivative of w, p, hs k and c set to zero.

A second major consideration in obtaining accurate numerical

simulations of flow situations is specification of a proper computational

grid. Obviously, code size, computer core size, computer run costs, etc.

dictate that the number of computational grid points used in performing a

calculation be minimized. However, in most flow situations not all regions
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of the flow require the same grid resolution. In regions containing boundary

layers or shock waves dependent variables change rapidly with physical

distance and these flow regions require high grid resolution. Other flow

regions may be satisfactorily resolved with a considerably sparser grid point

density. As previously described, the governing Navier-Stokes equations are

written in a general coordinate system. However, before performing a

specific calculation a coordinate system transformation suitable for the

problem at hand must be provided. Many possible methods are available for

grid generation, but in this example where both boundary geometry and flow

structure conform to well defined, geometric shapes, construction of the

coordinate system is preferable.

For the axisyninetric normal shock problem of this section, a stretched

Cartesian grid has been used in the symmetry plane. For this purpose, a

modification of the method of Roberts' (311, was employed. This approach

uses a sinh function for the purpose of clustering points in the interior of

a domain, to resolve the shock gradients, and a tanh function at boundaries

to resolve boundary layer gradients. A typical example of the grid, at a

particular time, is given in Figure 1. It should be noted in this connection

that care must be exercised in using the sinh function, since excessive

stretching can lead to the introduction of large spatial truncation errors.

Solution Adaptive Coordinate System

Specification of high grid resolution in the vicinity of a no-slip wall

is obviously required to resolve a boundary layer. However, specification of

a high resolution region to resolve a shock is not as simple a problem. In

some flow situations, both the shock location and angle can be well estimated

and in these cases an accurate, a priori judgment can be made in specifying

the region of high resolution. However, in many cases the situation is not

clear because the shock location and/or its shape may not be known a priori.

Since adequate grid resolution in the shock region is required to obtain
sharp solutions without spurious spatial oscillations, an alternative

procedure must be used. In the present case, a normal shock was expected in

the tube. Therefore, an orthogonal system with one set of coordinates

parallel to the wall and one set normal to the vail would be appropriate if

proper regions of high resolution could be obtained to resolve the shock.

23



With the basic form of the coordinate system established, a viable

shack tracking strategy was developed using the wall pressure gradient and

pressure rises to determine the shock location. In particular, a search for

the maximium pressure gradient location was used to establish a definition for

the shock center. In the early stages of calculation a "noisy" solution

often exists. Any spurious oscillations in the solution would prove

detrimental to accurate shock center determination since large gradients are

possible and could conceivably exceed the gradient at the actual shock

center. In order to avoid this possibility, a "filtering scheme" was applied

to the process of shack location. Figure 2 demonstrates diagraummtically the

relevant features of the search and filtering processes. In addition to the

filtering applied to the adaptive grid shock location scheme, the movement of

the mesh was controlled. This was achieved by allowing only limited mesh

movement at each time step. This avoids the introduction of excessive

temporal truncation error which could slow convergence.

Essentially, the procedure identifies turning points in the wall static

pressure distribution, examines the change in pressure between subsequent

turning points and carries out a search for the maximum pressure gradient in

the interval having largest pressure rise. Sections having negative pressure

gradient are ignored for this particular problem. This approach assumes that

the shock is centered at the point of maximum streamwise pressure gradient in

the interval having the largest positive pressure increase. This effectively

filters out all but the most significant pressure rise which is assumed to be

the rise due to the shock. In more general cases where multiple shocks occur

or where separation and reattachmient give rise to a plateau in the pressure

distribution a less restrictive filter would be required if resolution of

each significant pressure rise is desired. A significant pressure rise is of

course problem dependent, therefore, general guidelines are difficult to

prescribe.

Once the shock center was located, a new grid was constructed by

centering the sinh function at the new shock location. The transverse grid

was not changed in the normal shock calculation even though local boundary

layer thickening occurs in the interaction zone. However, the transverse

a grid transformation was constructed to take account of the expected

thickening and thereby ensure adequate boundary layer resolution throughout

the calculation domain. The entire process of establishing the shock
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location and constructing a new grid was performed explicitly, after each

time step, and as a consequence the grid motion lags the shock motion. The

grid motion was accounted for in the governing equations through inclusion of

terms containing derivatives of computational coordinates with time.

Results

The present case was run with two different turbulence models. These

were a mixing length model, and a k - c model; both of which have been de-

scribed earlier. Before beginning the calculation, an initial, consistent

approximation to the flow field was constructed. This was obtained by assum-

ing the Rankine-Hugoniot relations for both static pressure and velocity

ratios across the shock, at an assumed streamwise location, and applying a

tanh function to blend the upstream and downstream values for a given trans-

verse location. By also assuming constant total enthalpy and a specified up-

stream velocity profile, a consistent initial flow field was obtained. The

assumed shock location did not take into account the influence of the bound-

ary layer on shock location and as expected, the shock location began to move

upon initiation of the calculation. In order to maintain adequate resolution

in all phases of the calculation, the adaptive mesh strategy described ear-

lier was invoked. The calculation was first performed on a computational

grid with 41 transverse and 31 streamwise points, using the mixing length

turbulence model described earlier. This calculation converged within 150

time steps with an overall reduction in the maximum residual in the field of

two orders of magnitude. The residual was monotonically decreasing with

increase in time and the solution was stationary when the calculation was

terminated.

The results obtained are shown in Figs. 3 arid 4 along with those

obtained using a two-equation, k - c turbulence model. In the current work

an intermediate calculation was also performed using a one-equation, k-

model. This additional calculation was performed in order to obtain a suit-

able initial k field for use in starting the k - e model prediction.

However, more recent work indicates that the additional step is not necessary

and that the k - c calculation can be performed by using the mean flow

obtained using mixing length assumptions and using initial approximations for

k and C determined from algebraic relations. Results obtained using both

mixing length and k - c models are shown in Figs. 3 - 4 which also show

comparison with experimental data, for the wall static pressure through the
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interaction zone and velocity profiles at the streamwise locations indicated

in Fig. 4. Figure 5 shows the shear stress profiles evaluated from the k -E

results. Closer examination in Fig. 3, which shows the wall static pressure

distribution in the interaction zone, reveals good agreement with

experimental data using both turbulence models. Figure 4 shows velocity

profile plots at four streamwise locations. once again, agreement between

prediction and experiment is good with the mixing length model producing

slightly better results.

In performing this calculation the artificial dissipation parameter 0,

designed to remove pre- and post-shock induced spurious oscillations and

described in the appendix, initially had a value of 0.5. Such a relatively

large value certainly smears out spurious solution oscillations, but can also

modify the solution unrealistically. Therefore, after convergence with

0y - 0.5 its value was reduced to 0.05, which is a relatively small value, in

order to ensure an accurate solution free from arbitrary smearing. Values in

the range 0.025 < a < 0.1 have been used by the authors with good results for

a variety of flow problems (421, and generally a further reduction below a

.O5leaves the solution unaltered with eventually the spurious oscillations

returning as a -, 0.

It can be seen that mean flow quantities are well predicted by the

method, but apparent discrepancies exist in the prediction of Reynolds shear

stress profiles, Fig. 5. This is particularly true at z/63 - 4 which is very

close to the interaction zone. It is interesting to note that the

4 predictions of Mateer, et al [30] show a similar disparity. It should also

be noted that the turbulence measurements were obtained using hot wire

anemoactry, and as indicated by Mateer, et al (30] it is difficult to

determine the sensitivity of hot wire probes to velocity and density changes

in transonic flow. The discrepancy occurs in the region of the shock

boundary layer interaction wrhere density and velocity gradients are most

significant. As a consequence, the experimental turbulence data must be

viewed with caution in this area. In addition, the apparent rapid

dissipation occurring within 46m. of the interaction region seems

unrealistic and inconsistent with known turbulence processes (Fig. 5). The

problem of ascertaining the cause of the discrepancy would be difficult to

resolve without the use of non-intrusive turbulence measuring techniques.
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To gain additional insight into the normal shock wave-boundary layer

interaction process, it is informative to examine contour plots of static

pressure and Mach number. Figure 6 shows static pressure contour plots of

the whole solution domain in conjunction with a coordinate system plot

showing the relative locations of grid clustering and shock location. It can

be seen that a sharp (shock) pressure rise, extending across only eight

streamwise grid points is predicted in the free stream region, and that the

effect of its interaction with the boundary layer is to diffuse the shock and

form a characteristic lamda foot near the wall. Figure 7 shows the static

pressure in the interaction region in more detail. Figure 8, which presents

velocity vectors in the shock region indicates the displacement of the

boundary layer which results from the interaction process. It should be

noted that the present calculation strategy ignores the possible shock

discontinuity and instead continues to assume the solution can be expanded in

a Taylor series in this region. The present procedure 'shock captures'

rather than 'shock fits'. In the particular flow studied, the moderate

super-sonic Mach number encountered, the presence of the boundary layer, and

the confined nature of the flow all help ensure that in reality a sharp

discontinuity in the flow is not encountered, thus justifying the 'shock

capturing' approach.

The normal shock boundary layer interaction prediction described above

demonstrates, by comparison against experimental data, an ability to

accurately and economically predict transonic shock wave-boundary layer

interaction. The problem, though conceptually simple, provided a means of

validating the correct operation of the code and the various changes

incorporated to allow for the treatment of shock waves. The great similarity

between the results obtained using the simple mixing length and the k - C

*models is not surprising. This is because the mixing length was originally

developed for attached boundary layer flows and, at least in regions outside

the interaction zone, the problem considered contains discernable boundary

layer characteristics. Nevertheless, the problem provided a useful test of

the k-c model for which the mean flow results show equally good agreement

with data. It may be concluded from the results of this case that for

related normal shock wave-boundary layer interaction problems in which no

flow separation occurs use of a mixing length model will provide acceptable

results.

I'
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Steady Transonic Flow Over an Axisymmetric Bump

The second portion of the present effort focused upon the effect of

longitudinal curvature on the shock wave-boundary layer interaction process.

This was done by considering the problem of steady transonic flow over an

axisyimmetric bump. The first case in this portion of the study was based on

the experiment of Johnson and Horstman [32]. In this same reference, Johnson

and Horatman also report the details of their own calculation for the same

problem. The current calculated results for the Johnson-Horstman case are

compared with both experiment and the calculation reported in Ref. 32. The

remaining steady transonic bump calculations reported are variations of this

original case, and demonstrate the effect of increased approach boundary

layer thickness and of longitudinal wall curvature on shock inducement and

the shock wave-boundary layer interaction process.

Each case of the series of three cases was performed with an approach

Mach number of 0.875 with the bump mounted on a cylinder. The experimental

arrangement, shown in Fig. 8, used a hollow, thin-walled cylinder to avoid

cylinder leading edge effects influencing the interaction process. There-

fore, in simulating this experiment, a negligibly thin approach boundary

layer was specified at the upstream boundary. The bump considered is a cir-

cular arc with its leading edge joined smoothly to the cylinder surface by a

circular arc fillit. Using the chord length of the bump as the reference

length, the relative dimensions of the problem are indicated in Fig. 9. The

upstream distance from the bump leading edge to the inflow boundary was cho-

sen to allow development of a boundary layer velocity profile consistent with

that of the experiment. The other steady cases completed, although not com-

pared to experiment, are compared to the first case in order to demonstrate

in general terms the effects of increased inlet boundary layer thickness and

of increasing the wall curvature. The boundary conditions for all three

cases were the same and are described in the following section.

Boundary Conditions

Following Briley and McDonald [33] analysis of the characteristics for

the bump problem shows that for the cases of interest where the inflow and

outflow are subsonic and the supersonic patch expected in the vicinity of the

bmp does not extend to the top boundary of the solution domain the following

boundary conditions are appropriate.
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(i) Upstream (subsonic inflow) boundary-

Function condition on u-velocity (transverse velocity).

Two layer model on v-velocity and static enthalpy [33].
See following text for a brief explanation.

Second derivative of static pressure set to zero.

(ii) Downstream (subsonic outflow) boundary -

Second derivative of u, w and h set to zero.

Static pressure specified.

(iii) Wall boundary -

No-slip on u and w.

Normal momentum equation.

Wall temperature specified.

(iv) Freestream Boundary -

u set to zero.

First derivative of w, P and h set to zero, simulating a free

slip-wall condition.

The so-called two-layer model [33] used at the inflow boundary is

essentially a total pressure boundary condition applied to the core flow with

a specified boundary layer profile shape for the wall region. Hatching the

static pressure at the edge, defined by the first computational point from

the wall at which fwl/Iwlmax was greater than or equal to 0.99 on the
previous time step, enables calculation of wlw at this point. This provides

the required normalizing value for the pre-specified boundary layer profile

shape. Overall, the method provides a mechanism for drawing mass flow in

order to satisfy the downstream pressure given an upstream core total pres-

sure. This specification corresponds to the usual wind tunnel experiment

where stagnation conditions are set in an upstream reservoir and static pres-

sure is set at some downstream location. Specification of an inlet mass flux

could be accomplished indirectly by varying the downstream static pressure,

otherwise attempts to specify an inflow mass flux directly leads to numerical

problems.

(i) Large Radius of Curvature Bump; Thin Inlet Boundary Layer

This case, for which experimental data are available, simulates flow of

a ia developing boundary layer over a moderately thin axisymmetric bump. Before

beginning the calculation, an appropriate initial flow field was con-

structed. This was achieved by imposing a linearly varying static pressure
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drop between inlet and exit in addition to an assumed upstream velocity

profile. The boundary layer thickness upstream was set to a value of 0.0009c

where c is the bump chord length and this was found to give a boundary layer

growth matching that of the experiment at 0.25 chords ahead of the bump

leading edge. This was determined by comparing the computed and experi-

mentally reported velocity profiles at this location. The details of the

flow field were then obtained by assuming flat plate flow and constant total

enthalpy with density obtained via the equation of state. A constructive

technique was used to generate a computational grid of 31 transverse and 51

streamwise points. Later the number of grid points in the streamwise direc-

tion was reduced to 46 for reasons discussed subsequently.

The distribution of streamwise grid points for this problem was a

compromise between the desire to resolve the region of flow acceleration over

the bump and the region of deceleration through the shock and the need to

maintain an economical calculation. In view of this, the final coordinate

system used has one region of streamwise grid refinement. This region spans

the bump chord and has a minimum grid spacing of 0.037c at the trailing edge,

compared with a local maximum grid spacing ahead of the bump of 0.523c, and

of 0.166c aft of the bump. The starting flow field for this case was con-

structed by assuming the flow field to be zero pressure gradient flat plate

boundary layer flow. In other words a self similar velocity profile was

distributed throughout the domain with density, enthalpy and pressure

specified consistently. No attempt was made to introduce an initial shock

but rather the flow structure was allowed to develop with time. Having

established a suitable starting flow field, the calculation was begun. Solu-

tion convergence was achieved within about 150 time steps at which point the

maximum residuals of the problem had been reduced by two orders of

magnitude. It should be noted that the calculation at this time was changing

about some mean state with a maximum amplitude of about 1%. No detailed

study of accelerating convergence was made and it is possible that con-

vergence could be obtained with significantly fewer time steps. In the final

calculation the artificial dissipation parameter, described in the appendix,

was set at 0.05. The calculation was performed using a mixing length model

to account for turbulent viscosity variations and was subject to the boundary

conditions outlined in the previous section. The upstream Mach number was

0.875, but acceleration over the curved surface of the bump lead to locally

supersonic flow.
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The streamwise wall static pressure distribution predicted by the

current method is presented and compared, in Fig. 10, with both the

experiment and calculations of Johnson, Horstman and Bachalo [32]. It is

immediately apparent that agreement with experiment is not good in the

interaction region. The predicted pressure distribution indicates a shock

location significantly further downstream than that seen experimentally.

Similar disparity is evident in the results of Johnson, et al who attribute

the discrepancy to inadequacy of the turbulence models used in their

calculations. Johnson, et al [32] used two different models: the first

being the Cebeci-Smith [34] mixing length model and the second the

two-equation model of Wilcox-Rubesin [35]. In view of the close agreement

between these two calculations obtained by Johnson, et al [32], it seems

unlikely that turbulence modeling is the key to resolving the major

discrepancy between calculation and experiment. In support of the last

statement, and purely for demonstration purposes, a laminar flow calculation

was performed using the method of this report and subjected to the same inlet

conditions, boundary conditions and pressure ratio of the turbulent case.

For laminar flow at the same Mach number as the turbulent case it is expected

that the shock would adopt a position closer to the leading edge of the

bump. Therefore, a laminar calculation should indicate the possible

sensitivity of the calculation to the turbulence model. Although the laminar

calculation indeed moved the shock forward and consequently moved the results

closer to experiment, the movement was not sufficient to come close to

matching the data. Since the laminar case represents an extreme perturbation

in the viscosity, and since the two calculations of Ref. [32] and the

* turbulent calculation presented here are essentially in agreement, it seems

4 unlikely that physically reasonable perturbations of a turbulence model would

*produce better agreement.

More likely as an explanation is that insufficient experimental

downstream flow and geometry details were provided, leading to the

application of incorrect downstream boundary conditions and geometry modeling

in both the Johnson-Horstman calculation and that reported here. It should

also be noted that Johnson and Horstman (32] applied downstream boundary

conditions at a distance of 4.4 chords from the leading edge in order to be

able to apply first derivative boundary conditions. In order to justifiably

assume that flow variables were not changing at the downstream boundary, they

recalculated the flow with the boundary at different locations and imposed/ ,
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the same boundary conditions. However, even though they observed

substantially unchanged results, it should be noted that the downstream

boundary of their calculation was placed about 2 chords further downstream

than the diffusing section present in the experiment and as a result did not

take into account the change in pressure expected in the transition to the

diffuser, shown in Fig. 9.

In the case of the current calculation, the downstream boundary

conditions were initially applied at about 4 chords downstream of the leading

edge of the bump and the magnitude of the static pressure was obtained by

extrapolation from the experimentally determined value at 1.5 chords

assuming, as Johnson et al implied, that the pressure profile was flat beyond

that location. This was necessary due to the lack of experimental data at

the end of the cylindrical section, approximately 2.5 chords aft of the

leading edge. In order to demonstrate the importance of appropriate

downstream boundary conditions, two additional calculations were performed in

which the downstream boundary was located at 2.67 chords aft of the leading

edge. In this case, the number of streamwise grid points was cut to 46.

These were performed with the same boundary conditions as described

previously but with the imposition of upstream to downstream static pressure

ratios of 1.0 and 1.05, respectively.

The wall static pressure for both of these cases is shown superimposed

on Fig. 10. It can be seen that with the downstream boundary located at the

start of the diffusing section of the experiment, and an exit static pressure

of 1.05, the wall pressure profile is modified and the start of the pressure

rise is significantly further forward than in the case with the downstream

boundary at 4 chords aft of the leading edge. With a pressure ratio of 1.05

better agreement with the experimental data is achieved. Even though the

minimum and maximum pressures are greater than given by the data, the

relative shock location is correct. These calculations clearly demonstrate

the sensitivity of this transonic flow configuration to the downstream

conditions.

Figures 11 and 12 show constant static pressure and Mach number

contours respectively and are presented in order to demonstrate the flow

behavior. Examination of the static pressure contours in Fig. 11, shows the

expected expansion as the flow accelerates over the bump, followed

/
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by a shock as the flow turns back parallel to the cylinder wail. For this

case flow separation is of limited extent with the separation point being at

z/c-0.69 while reattachment occurs at z/c-0.9. Velocity vectors are shown in

Fig. 13.

An additional important point to note in this series of cases is the

position of the separation and reattachment points since the effective wall

shape downstream of the acceleration determines the shock location which in

turn affects flow separation due to the adverse pressure gradients associated

with it.

(ii) Large Radius of Curvature Bump; Thick Inlet Boundary Layer

This second axisymmetric bump case was performed in order to

demonstrate, in general terms, the effect of increased approach boundary

layer thickness on the transonic shock wave boundary layer interaction. The

bump geometry used was identical to that described previously and the

calculation was performed with the imposition of an inlet to exit static

pressure ratio of 1.0. In addition, the boundary layer thickness imposed at

the upstream boundary was increased from 0.0009c to 0.049c. Figures 14 and

15 show the constant static pressure and Mach number contours for the thick

boundary layer case. Comparing Figs. 11 and 14 it can be seen that the shock

in Fig. 14 is located further forward than that in Fig. 11, and that it

extends further into the free stream. The thick boundary layer shock is

weaker and the shock shape closer to vertical, thus indicating boundary layer

thickness has an effect on strength and shape. In addition, examination of

the Mach number contours reveals an extensive separation in Fig. 15 which

significantly modifies the displacement surface. The increased boundary

layer thickness associated with this is evident in Fig. 16, which shows

velocity vectors at selected stations. Comparisons of wall static pressure

distributions will be discussed subsequently.

(iii) Small Radius of Curvature Bump; Thin Inlet Boundary Layer

In order to demonstrate the effect of bump longitudinal curvature on

shock wave-boundary layer interaction, one final steady flow case was

performed in which the thin inlet boundary layer of the original case was

imposed at the upstream boundary and an inlet to exit static pressure ratio

of 1.0 was imposed. These conditions were imposed on a cylinder/bump
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configuration for a bump having a radius of curvature of 0.59c compared with

1.35c for the large curvature cases above. Figures 17 and 18 present

constant static pressure and Mach number contours respectively while Fig. 19

shows velocity vectors at selected streamwise locations. It can be seen, as

expected for the larger bump, that a pronounced separation occurs at the bump

trailing edge. In addition, while a shock exists it does not extend very far

into the core flow. However, by comparison with the original case, having

large radius of curvature and thin approach boundary layer, the start of the

pressure rise is located significantly closer to the bump leading edge at

about z - 0.7c. Again the details of the shock pattern including strength

and shape appear sensitive to geometry.

Steady Transonic Flow Over an Axisymmetric Bump: Summary

Among the main observations to be derived from the foregoing discussion

of results are the following. In performing calculations of this type it is

very important to accurately model the downstream boundary conditions.

This has been demonstrated in the calculations of the Johnson-Horstman bump

problem. As has been shown in Fig. 10, specification of downstream boundary

conditions appears to have a much more significant impact upon results than

reasonable (or even drastic) changes in turbulence model. Also, it appears

that the position of the induced shock is largely determined by the location

and extent of the flow separation, which in turn depends upon the shock

strength. Thus, an analysis containing these mutually dependent effects is

required to obtain meaningful predictions. In general, both increase..

approach boundary layer thickness and more severe wall curvature tend to move

the separation point forward since even without the shock both give rise to

earlier separation. Increased approach boundary layer thickness gives rise

to premature separation because of the boundary layers inability to sustain

the adverse pressure gradient associated with the flow deceleration through

the shock. Increased curvature gives rise to more severe acceleration and

deceleration and consequently more severe adverse pressure gradients which

also adversely affects the ability of the boundary layer to avoid

:eparation. The presence of the shock which appears as a result of turninga the locally supersonic flow enhances the pressure gradients giving rise to

some modification of the location of the separation, and its extent.
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Figure 20 gives a comparison of the wall pressure distribution for each

of the above cases. It is apparent that the case having a smaller radius of

curvature bump yields a pressure distribution consistent with intensive flow

acceleration over the bump. This is indicated by the significantly lower-

minimum wall pressure achieved. Both this case and the case having a thick

approach boundary layer exhibit flattening of the pressure rise typical of

that occuring when shock induced separation occurs. The start and end of

this "plateau" coincides in these calculations with the separation and

reattachment points. No such flattening is apparent in the larger radius of

curvature, thin boundary layer case which is consistent with the lack of

significant separation in this case. Considering the overall wall pressure

distribution, it appears that the wall pressure is more sensitive to changes

in the bump curvature than to changes in the boundary layer thickness. This

indicates bump curvature may be an extremely important parameter in

axisymmetric interactions.

Unsteady Transonic Flow Over an Axisymmetric Bump

Unsteady transonic flow is a frequent occurence in aeronautical

engineering applications, and consequently prediction of such phenomena are

of interest. Examples of unsteady transonic flow are the helicopter rotor

field, the surge phenomenon occurring in transonic turbomachinery flows and

flight control surface buzz. Therefore, under the present effort, cases of

unsteady transonic flow were considered with the major aims being to

demonstrate unsteady transonic flow calculations and consider both a

quasi-steady and time-dependent flow configuration using the time-dependent

Navier Stokes equations. The specific flow configuration considered was

obtained by imposing a periodically perturbed exit static pressure on

transonic flow over an axisymmetric bump. The bump geometry modeled is

identical to that described earlier in which a large radius of curvature bump

was mounted on an axisymmetric cylinder, with negligibly thin approach

boundary layer.

The boundary conditions for this problem were described earlier with

the exception of the exit static pressure boundary condition. The exit

static pressure was applied as a time-dependent function of the form:

p(t) p Ap cos (t)

35

-



where p is the mean exit pressure, Ap is the perturbation amplitude, w is the

frequency and t is time. Rather than use w, it is convenient to introduce

the reduced frequency fr based upon boundary layer scales defined

as w6./Ueo where 8., is the boundary layer thickness at the leading edge

of the bump and U. the edge velocity at this same location.

For the two cases described here, p, - 1.05, tip -0.05 and

f- 0.175 and 0.004.

Mi High Frequency Case (fr - 0.175)

The unsteady flow cases described here were performed using a mixing

length model to account for variations in turbulent viscosity. Use of such a

simple model seems reasonable in this- case since the main aim is the econom-

ical demonstration of the capability of the present method to compute

periodically unsteady flows and to examine the effect of frequency upon the

flow. Furthermore, appropriate time-dependent multi-equation models are not

yet well established. The starting flow field for this case was the con-

verged steady case described previously in which the pressure ratio was set

to 1.0, but as noted in the introduction to this section, the time mean pres-

sure for these cases was set to 1.05. However, starting the calculation such

that the initial exit pressure for the case was 1.0 assured a gradual transi-

tion from steady flow to unsteady flow calculation. In other words the

calculation was begun at a turning point in the exit pressure temporal varia-

4 tion; i.e., dPe/dtn0. Examination of the time history of the wall static

pressure, given in Fig. 21, reveals the frequency response of the flow to

cyclic variation in the imposed pressure ratio. Shown in the figure are the

static pressure variations at the three locations indicated. These locations

are at the downstream boundary, at z/c - 0.75, the steady flow shock location

and at z/c - 0.61 the experimentally determined steady flow shock location.

The latter two locations were chosen for convenience and are not, of them-

selves, of major physical significance. The initial wall pressure transient

is a response to the newly imposed mean pressure ratio and takes 7w radians

before the first turning point is reached. Between 7w radians and 107!

radians the response of the wall pressure at z/c .75 developed a periodic
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oscillation corresponding to the sinusoidal oscillation of the back

pressure. Examination of the response at the start of the pressure rise at

z/c a.61 shows no appreciable variation once the initial transient adjusting

the mean pressure is over. The implication is that after adjusting to the

new mean value, the shock location is essentially unaffected by downstream

oscillations at this frequency. That is at this relatively high frequency of

oscillation disturbances propagated upstream from the perturbed exit pressure

are attenuated by the shock and as such do not affect the shock location.

Comparison of this result, at the instant at which the pressure ratio is

about 1.05, with the steady state solution having a pressure ratio of 1.05

shows no appreciable difference in the wall static pressure profile in the

vicinity of the shock.

(ii) Low Frequency Case (fr - 0.004)

In order to show the flow phenomena for a much reduced exit forcing

frequency a low frequency case was initiated. This calculation was begun by

restarting from the previous high frequency case but with the new frequency

imposed on the exit pressure variation. For this case, as in the previous

case, the mean static pressure at exit was 1.05 and the amplitude of the

oscillation was 0.05. However the reduced frequency of oscillation was

reduced to 0.004 in order to attempt to appreciably influence the location of

the shock. Modifying the frequency of oscillation instantaneously introduces

a transient into the calculation, which was allowed to develop over several

cycles before a periodic response to the oscillating exit pressure was

* detected. Two additional cycles were then computed in order to verify

periodicity. Figure 22 shows the wall static pressure variation at a number

of streamwise locations including the exit plane. This figure indicates

periodic response to the exit forcing frequency, but Fourier analysis of the

results also reveals that the response in the vicinity of the shock contains

higher harmonics which tend to distort the response locally. In support of
this, Figure 23 shows the streamwise variation in amplitude of the primary

and first harmonics of the wall static pressure response. It can be seen

g that far upstream and downstream the response remains almost purely

sinusoidal since the first, and higher harmonics are negligible. However in

the vicinity of the shock the amplitude of both the primary and first

harmonics peak dramatically. This is an expected result of the motion of the
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shock since in the vicinity of the start of the shock the time mean pressure

profile exhibits a minimum; and with the shock oscillating about its time

mean location, vail points in this vicinity Cz/c - 0.61) experience a wider

range of pressure variation than those upstream and downstream of the bump

where the time mean pressure profile is a relatively slowly varying function

of zic. It is also interesting to note that the time mean pressure profile

is indistinguishable from the steady flow pressure profile having an exit

pressure of 1.05. Figure 24 shows a sequence of static pressure contour

plots for this problem and indicates the movement of the shock as a function

of time.

Unsteady Flow Cases: Summary

The unsteady, transonic flow calculations performed and reported in the

previous section are for two reduced frequencies in the high and low range

respectively. it is observed that for high frequency of exit pressure oscil-

lation modification to the flow field are confined to the vicinity of the

downstream boundary. The shock location is unaffected by the perturbations.

In contrast the low frequency case, having the same forcing function ampli-

tude, exhibits a periodic response to the downstream pressure fluctuations.

This case in which the shock moves periodically about its time mean location

produces large (by comparison with the input) amplitude fluctuations in the

vicinity of the shock's time mean location.

Steady Flow Over An Axisynmetric Compression Ramp

Many workers have addressed the problem of calculating oblique shock

wave inducement at two-dimensional compression corners in supersonic approach

flow [9]. However, the axisymmetric compression corner problem has received

little attention. Therefore, as part of the present effort consideration was

given to the problem of axisyimnetric compression corners. Before performing

the calculation, which in this case was for an approach flow having a Mach

number of 2.0 and a 23* axisymmetric compression ramp, a suitable starting

flow field and coodinate system were required. In constructing the

coordinate system use was made of the known exact incompressible potential

flow solution for flow over an axisymuetric ramp in order to generate the

streaavise coordinate lines. Adopting the streamlines obtained from the

potential flow solution and applying an appropriate grid stretch in the

) transverse direction to resolve the boundary layer region provided one family
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of coordinate lines. The transverse coordinate lines were obtained by

defining the end points of an assumed oblique shock at an angleextracted from

the inviscid shock wave relations, and using these points on the top and

bottom boundaries as the centering location about which the remaining

streamwise grid points are clustered. The second family of coordinate lines,

therefore consisted of a series of straight lines joining points on the top

and bottom boundaries of the computational domain, Fig. 25. These lines are

vertical at the upstream boundary but as a result of applying different grid

stretching on the top and bottom boundaries the angle each line makes with

the horizontal varies throughout the computational domain such that, in the

vicinity of the expected shock, the grid lines align with the shock

direction. At the downstream boundary coordinate lines are once again

vertical. Having generated the grid the initial velocity field was aligned

in the direction of these coordinate lines. To account for the expected

shock the initial flow field was constructed by considering the flow field to

consist of three zones. In the first, upstream, zone pre-shock velocities

and pressures where applied. Downstream post shock values where obtained

from the shock relations, and in the intermediate region upstream and

downstream values were smoothly blended to avoid an initial discontinuous

representation of the shock. Having determined both the velocity and static

pressure fields, the assumption of constant total enthalpy was invoked to

enable the density and temperature fields to be determined.

The resulting flow field constituted a reasonable approximation

4 for use as the initial flow field for the problem. The calculation

J initiated from this flow field converged within 150 time steps; although in

developing the strategy for running the case approximately 500 time steps

were performed, it is estimated that to rerun the same or a similar

calculation with all the appropriate changes incorporated 150 time steps is a

realistic est imate for convergence. At convergence, the maximum residuals

for the problem had been reduced by two orders of magnitude, at which point

the maximum change in the solution on subsequent time steps was less than 1

per cent, and was continually diminishing with time.
The boundary conditions used for the wedge problem were based upon a

characteristic analysis of the inviscid flow equations which indicates that
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for the equations used four physical conditions are appropriate at the

upstream boundary. The conditions specified for the problem were:

(i) Upstream (supersonic inflow) boundary -

Function conditions on u-velocity and w-velocity with a

bounday layer profile specified.

Function conditions on density and enthalpy.

(ii) Downstream (supersonic outflow) boundary-

All dependent variables extrapolated by imposing zero second

derivatives.

(iii) Wall boundary -

No-slip on u- and w-velocities.

Normal derivatives of static pressure and enthalpy set to zero.

(iv) Free stream boundary -

First derivative in the coordinate direction set to zero for all

dependent variables.

The assumption made in applying the above free stream boundary conditon

is that ahead and after the shock, the free stream is expected to be inviscid

and approximate slug flow. In addition, in the vicinity of the shock flow

variables in the direction along the shock do not vary. Therefore, by

arranging the coordinate system to align with the shock enables extrapolation

from the field to the free stream boundary in the coordinate direction to be

a reasonable boundary condition.

The results presented are for a calculation in which the mixing length

model described earlier has been used to represent the effect of turbulence

on the mean flow development of supersonic flow over an axisymmetric

compression ramp. These results are shown in Figs. 26 to 28 and include wall

and freestream static pressure distribution, constant density and constant

, static pressure contours. Examination of Figs. 26 and 27 show a sharp shock

located at the corner. The upstream influence of this corner is, as

expected, very limited with a marginal increase in pressure ahead of the

corner.

The wall static pressure distribution of Fip. 28 shows a very sharp

pressure rise to a peak pressure of 2.65. The rise in pressure does not

S exhibit the plateau often expected in induced shock flows. In general, such

a plateau is indicative of a separation region. In this case, a very small

separation zone exists with separation and reattachment at z = -0.23 and

/

~40



0.023, respectively. At reattachment, the pressure begins to fall smoothly

and monotonically down to a level of 2.35. In contrast to the sharp shock

indicated by the wall static pressure distribution the pressure distribution

at the freestream boundary shows a steady rise in pressure through a

relatively diffuse shock with a maximum pressure of 2.2. This pressure rise

corresponds to an expected inviscid pressure rise of 2.24. These results

were obtained with the artificial dissipation parameter a set to 0.1 which

experience has shown to be a low value. Significantly, the results are free

of spurious oscillation in spite of this low artificial dissipation.

Experience with other similar codes has shown a - 0.1 to produce acceptable

solutions which compare well with data.

In the case described here the lack of experimental data prevents

comparisons but in general it can be stated that the solutions appear

physically plausible.

Oblique Shock-Wave Impingement on a Flat Plate Boundary Layer

While the supersonic flat plate boundary layer shock impingement problem

has been addressed by a number of workers employing Navier-Stokes analyses,

e.g. [361, most have used a Cartesian coordinate system on which to perform

their calculation. The main criticism of these calculations centers around

the shock capturing used to treat the impinging and reflected shocks. The

use of a Cartesian grid to predict an oblique shock can result in spatial
truncation error problems as a result of poorly resolving the shock. In

4 order to alleviate such problems, a coordinate system was devised which

aligns with both the impinging and reflected shocks thereby maintaining

adequate resolution of both shocks with a limited number of grid points,

Fig. 30.

A calculation was performed with this coordinate system for a freestream

Mach number M - 2.96 and an impinging shock wave created by a l0.89* shock

generator. The Reynolds number was sufficiently high so that the flow was

turbulent, and a mixing length turbulence model was employed. The coordinate

system shown in Fig. 30 was allowed to adapt to the impinging and reflected

shocks so that very sharp shock definition was obtained, as shown by the

S pressure contours in Fig. 31. Even so the predicted pressure variation along

the wall did not compare very well with the available experimental data for
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this case (361. In particular, the predicted wall pressure showed a much

more rapid rise than that observed experimentally with no plateau which is

characteritic of a significant separation region. While the calculation did

predict separation, its length and extent was not sufficiently large to

modify the wall static pressure distribution significantly.

In the calculation an artificial dissipation parameter of a - 0.5 was

employed, and all attempts to reduce this value were unsuccessful. It was

not known whether the coordinate system, the artificial dissipation or the

relatively simple mixing length turbulence model was responsible for the

inaccuracies in the predictions. Therefore, a study was undertaken to

identify the cause of the discrepancies. First, an oblique shock impinging

on a flat plate laminar boundary layer was considered using a mesh similar to

that shown in Fig. 30. The case chosen had a freestream Mach number M = 2.0,

and a shock impinging at an angle of about 32.6 degrees. As in the previous

case, the predicted wall pressure rise was more rapid than that observed

induced separation region was not as large as that indicated by the

experimental skin friction measurements. Also, in this case it was not

possible to reduce the artificial dissipation parameter below a value of

a - 0.5.

Therefore, a calculation was performed for the shock impinging on a

laminar boundary layer using a Cartesian grid with 50 transverse points and

100 streamwise points. The computational domain extended from 0.6 inch to

3.1 inches downstream of the plate leading edge, and from 0.0 to 2.0 inches

4 normal to the wall. The inflow boundary layer thickness (.02 inch) for a

fully developed turbulent profile was chosen such that the boundary layer

velocity profile was reproduced reasonably well at the first data measurement

station, 1.1 inches from the plate leading edge. In this case the shock wave

impinges at about 1.96 inches, and the shock has little effect on the

velocity profile at the first measurement station. The wall pressure

distribution for this case is shown in Fig. 32, where it is seen that initial

pressure rise begins somewhat upstream of the experimental rise [41] and a

plateau longer than that observed experimentally is predicted. The

calculation also yielded a separation region extending from about 1.5 to 2.5

inches which is about 0.5 inches longer than the experimental separation

region as determined from skin friction meaurements. This larger calculated

* /4
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separation region is consistent with the longer wall pressure plateau shown

in Fig. 32.

In this Cartesian grid calculation an artificial dissipation parameter

of a - 0.5 was required, and a smooth solution could not be obtained with a

smaller value. As a result, the predicted incident and reflected shock waves

were excessively smeared even though the calculation utilized a large number

of mesh points. Thus, the pressure rise across the shock extended over a

larger physical region beginning further upstream than experimentally

observed, but with a predicted pressure gradient large enough to cause

separation of the laminar boundary layer.

In conclusion, the Cartesian grid calculation of wall pressure for a

shock wave impinging on a laminar boundary layer yielded reasonable results

with quantitative discrepancies attributable to excessive shock smearing due

to artificial dissipation. Modifications to the form and magnitude of the

artificial dissipation required for shock capturing are necessary to reduce

these errors. Also, shock adapting meshes such as that shown in Fig. 30

should be further investigated because of the potential for sharp shock

predictions with a minimum number of mesh points.
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APPENDIX - SOLUTION PROCEDURE [17]

Background

The solution procedure employs a consistently-split linearized block

implicit (LBI) algorithm which has been discussed in detail in [15, 16].

There are two important elements of this method:

(I) the use of a noniterative formal time linearization to

produce a fully-coupled linear multidimensional scheme which

is written in "block implicit" form; and

(2) solution of this linearized coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn [371

treatment of scalar ADI schemes.

The method is thus referred to as a split linearized block implicit (LBI)

scheme. The method has several attributes:

(1) the noniterative liearization is efficient;

(2) the fully-coupled linearized algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to methods

which employ ad hoc decoupling and linearization assumptions to

identify nonlinear coefficients which are then treated by lag and

update techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means for

convergence acceleration for further efficiency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with the

governing equations, and this means that the "physical" boundary

conditions can be used for the intermediate solutions. Other

splittings which are inconsistent can have several difficulties in

satisfying physical boundary conditions [16].

(5) the convergence rate and overall efficiency of the algorithm are

much less sensitive to mesh refinement and redistribution than

algorithms based on explicit schemes or which employ ad hoc

decoupling and linearization assumptions. This is important for

accuracy and for computing turbulent flows with viscous sublayer

resolution; and
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(6) the method is general and is specifically designed for the

complex systems of equations which govern multiscale viscous flow

in complicated geometries.

This same algorithm was later considered by Beam and Warming [38], but the

ADI splitting was derived by approximate factorization instead of the

Douglas-Gunn procedure. They refer to the algorithm as a "delta form"

approximate factorization scheme. This scheme replaced an earlier non-delta

form scheme [39], which has inconsistent intermediate steps.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four

equations: continuity and two/three components of momentum equation in

three/four dependent variables: p, u, v, w. Using notation similar to that

in [151, at a single grid point this system of equations can be written in

the following form:

3H /t- D( ) + sC )()

where * is the column-vector of dependent variables, H and S are column-

vector algebraic functions of *, and D is a column vector whose elements are
the spatial differential operators which generate all spatial derivatives

appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit

time-difference approximations of (3):

(Hn+ l Hn)/At =(D ) + (1-8) (D + ) (2)

where, for example, Hn+l denotes H(*n+l) and At - tn+l - tn. The

parameter B (0.5 - B - 1) permits a variable time-centering of the scheme,

with a truncation error of order [At 2 , (B - 1/2) At].

A local time linearization (Taylor expansion about *n) of requisite

formal accuracy is introduced, and this serves to define a linear differen-

tial operator L (cf. [151) such that

Dn+l D n + Ln 0n+l- 0n  + 0(At2  (3)
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Similarly,

Hnl = Hn+ (H/3 )n (#n+l _ ) + 0 (At2 ) (4)

sn+l . sn+ (S/3)n (,n+l - + 0 (At 2 ) (5)

Eqs. (5-7) are inserted into Eq. (4) to obtain the following system which is

linear in n+l

(A - BAt Ln ) (n+l ) - At (Dn + Sn ) (6)

and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A (H/3.)n - $At (3S/3 )n (7)

Eq. (8) has 0 (At) accuracy unless H 0, in which case the accuracy is the

same as Eq. (4).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derivative terms and also turbulent viscosity and artificial dissipa-

tion coefficients which depend on the solution variables. Although formal

linearization of the convection and pressure gradient terms and the resulting

implicit coupling of variables is critical to the stability and rapid con-

vergence of the algorithm, this does not appear to be important for the

turbulent viscosity and artificial dissipation coefficients. Since the

relationship between Pe and dj and the mean flow variables is not conven-

iently linearized, these diffusive coefficients are evaluated explicitly at

tn during each time step. Notationally, this is equivalent to neglecting

terms proportional to 3 Ve/ 3 or 3dj/a0 in Ln, which are formally pre-

sent in the Taylor expansion (5), but retaining all terms proportional to

Ue or dj in both Ln and Dn.

It has been found through extensive experience that this has little if

any effect on the performance of the algorithm. This treatment also has the

added benefit that the turbulence model equations can be decoupled from the

system of mean flow equations by an appropriate matrix partitioning (cf.

(151) and solved separately in each step of the ADI solution procedure. This

reduces the block size of the block tridiagonal systems which must be solved

in each step and thus reduces the computational labor.

In addition, the viscous terms in the present formulation include a num

cross-derivative terms implicitly within the ADI treatment which follows, it

is not at all convenient to do so; and consequently, all cross-derivative

/
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terms are evaluated explicitly at tn . For a scalar model equationrepresenting

combined convection and diffusion, it has been shown by Beam and Warming that the

explicit treatment of cross-derivative terms does not degrade the unconditional

stability of the present algorithm. To preserve notational simplicity, it is

understood that all cross-derivative terms appearing in Ln are neglected but

are retained in Dn . It is important to note that neglecting terms in Ln has

no effect on steady solutions of Eq. (8), since *n+l S 0 and thus Eq. (8)

reduces to the steady form of the equations: Dn + Sn - 0. Aside from

stability considerations, the only effect of neglecting terms in Ln is to

introduce an 0 (At) truncation error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (8) is split

using ADI techniques. To obtain the split scheme, the multidimensional

operator L is rewritten as the sum of three "one-dimensional" sub-operators

Li Ui- 1, 2, 3) each of which contains all terms having derivatives with

respect to the i-th coordinate. The split form of Eq. (8) can be derived

either as in [19, 221 by following the procedure described by Douglas and

Gunn [231 in their generalization and unification of scalar ADI schemes, or

using approximate factorization. For the present system of equations, the

split algorithm is given by

(A - AtL) * -n) At (Dn + Sn) (8a)

(A - SAtL) * - n) A (* - n) (8b)

CA -AtLn) (,n+l _n) AC(** -n) C8c)

where ** and ** are consistent intermediate solutions. If spatial

derivatives appearing in Li and D are replace by three-point difference

formulas, as indicated previously, then each step in Eqs. C0a-c) can be solved

by a block-tridiagonal elimination.

Combining Eqs. (lba-c) gives

(A - AtL.) A-I (A - OAtLn) A-1 ( - SAtLn) (,n+ _ ) 6t Dn + Sn ) (9)

which approximates the unsplit scheme (8) to 0 (At2 ). Since the intermediate

B steps are also consistent approximations for Eq. (8), physical boundary

conditions can be used for ** and 4** [19, 221. Finally, since the Li

are homogeneous operators, it follows from Eqs. (l0a-c) that steady solutions
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have the property that - - -*K and satisfy

Dn + Sn 0 (10)

The steady solution thus depends only on the spatial difference approxiations

used for (12), and does not depend on the solution algorithm itself.
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FIGURE 7 - PRESSURE CONTOURS CLOSE TO THE SHOCK
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FIGURE II- PART OF THE COORDINATE SYSTEM FOR THE LARGE RADIUS

OF CURVATURE BUMP WITH THIN INLET BOUNDARY LAYER

63



40
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FIGURE 13 - CONSTANT MACH NUMBER CONTOURS: LARGE RADIUS OF CURVATURE

BUMP, THIN APPROACH BOUNDARY LAYER
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FIGURE 26 - COMPRESSION RAMP: COORDINATE SYSTEM

FIGURE 27 - COMPRESSION RAMP: DENSITY CONTOURS

FIGURE 28 - COMPRESSION RAMP: PRESSURE CONTOURS
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FIGURE 30 - COORDINATE SYSTEM FOR RESOLVING IMPINGING AND

REFLECTED SHOCKS
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FIGURE 31 - CONSTANT PRESSURE CONTOURS FOR SHOCK IMPINGING ON
A TURBULENT BOUNDARY LAYER, USING SHOCK ADAPTING

I' COORDINATE SYSTEM, M=2.96, SHOCK GENERATOR ANGLE
10.89 DEGREES.
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